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ABSTRACT

This report considers empirical solutions to the first-passage
or single-highest-peak (SHP) problem for a distributed elastic structure
with rectangular geometry subjected to both stationary and a specific
form of nonstationary random excitation. The structure is.a flat, homo-
geneous, uniform, square plate and the applied stationary excitation
is white noise perfectly correlated in both space and time. The non-
stationary excitation is a rectangular noise burst with a unity correla-
tion in both space and time. The structure and the excitation are simu-
lated electrically and péak response data are collected for (1) simply
supported boundary conditions at all edges and (2) rigidly clamped
boundary conditions at all edges. These response data are used to
eétablish probability curves yielding an estimate of the probability that
the maximum response, for a finite time interval, remains below a pre-

selected threshold level.
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1. INTRODUCTION

The SHP (single-highest-peak) problem generally refers to predict-

ing the maximum response a mechanical system may achieve, within a

finite time interval, when subjected to stationary, broad-band white noise
excitation. It is noted that the maximum response need not necessarily
correspond to a peak amplitude in the response time history. The solu-
tion rests with determining PM(|B| < [30, T) which is the probability that
the absolute value of the response B remains below a threshold level 50
within the time interval T. The term P is a dimensionless ratio of the
maximum amplitude to RMS response of the system and T is the time
interval over which the response is observed. The P response may be

‘a positive maximum value [3+, a negative maximum value B, or an
absolute maximum value |ﬁ| and the RMS response is the system RMS
response to stationary white .noiée excitation perfectly correlated in
space and time. For this discussion, only solutions involving |(3| ”
values are shown.

For a single degree-of-frveedom system, the SHP problem has
been examined in detail by various investigators using both simulation
and analytical procedures as is discussed in References listed at the
end of this report. Solutions acceptable for practical applications have
been cleverly determined not only for stationary white noise excitation
(References 1 and 7), but also for white noise applied as a step function
(Reference 5) and for particular noise bursts as well (References 4 and 8).
It is judicious to examine some of the established results for the vibra-
tion of a single degree-of-freedom system before discussing the SHP

problem for a distributed elastic structure.




2. RESULTS FOR A SINGLE DEGREE-OF-FREEDOM SYSTEM

A linear single degree-of-freedom mechanical system (also called

a linear mechanical oscillator) is shown as Figure 1

/ t"x

C
/ - m > f(t)
NN
y k

Figure 1. A Single Degree-of-Freedom Mechanical System
The dynamic behavior of this system is defined by the equation of motion
mx + cx + kx = £(t) (1)

where m corresponds to the mass, c¢ the viscous damping coefficient,
k the spring constant and f(t) a forcing function applied to the mass.

In an alternate form, this equation may be written as

. L4 2
‘x+2§,w x-l-wXZ""'—f(t)
n n m

(2)




where

= Zgwn

3 |o

(3)

2
=w = (Z‘ITfn)

g |

and { is the damping factor and w the undamped natural frequency of
the system. For f(t) equal to a simple harmonic forcing function,

say f(t) = fo sin wt, the forced displacement response x(t) is

x(t) = -I:I-L(% fo sin wt (4)

maow
n

where the magnification factor H(w) is defined in complex form by

For f(t) equal to an arbitrary deterministic function of time, the re-

sponse may be calculated in the following ways

2
o mow 0
n

1 (® Lot t
x(t) = _Z—Tl'_f H(w) F(w) e dw =f h(r) f(t - 7) dr

(6)




where F(w) is the Fourier Transform of f(t) and h(t) is the system
response to a unit impulse excitation. The solution obtained by inte-
grating over w is a Fourier integral solution while the form given by
integrating over T is a convolution integral solution. The Fourier
integral gives the solution x(t) as a superposition of steady-state re-
sponses and the convolution integral gives the solution as a super-
position of free vibration responses.

The output response of a lightly damped single degree-of-freedom
system wherein f(t) is stationary broadband white noise excitation is
shown as Figure 2. The undamped natural frequency of the mechanical
system is assumed large compared with the half-power bandwidth AND
the bandwidth of the input spectrum is assumed wide in comparison to
the system half-power bandwidth and includes fn . It is further implied
the system has achieved stationarity in its response and we are ob-

serving the response beginning at an arbitrary instant of time.

Amplitude

‘ Envelope
/,T R
= / W \

Figure 2. Response of a Lightly Damped Mechanical Oscillator to
Broadband Stationary Random Excitation




This response appears as a sinusoid (at the frequency fn) with
a slowly varying random amplitude and random phase. The average

number of zero crossings per second E[No] is approximately

b1
z
I
A=
t

n
= (7)

where wy and w, are interpreted as the half-power point frequencies

. 2 .
in radians per second. The mean square displacement response pr is

2 1TGOQ :
Y= 2 3% ()
2m w
n
where
1
Q= 2t

and Gb is the magnitude of the input spectrum with unit»s of lbz/rad/sec.
The term I.n (see page 80 of Reference 6 and Reference 11) is a dimension-
less coefficient ranging from zero to one with its exact value being de-
pendent upon (1) the damping factor Z,_and (2) the ratio of the cutoff
frequency W, of the input spegtrum to w as shown in Figure 3. Simi-

larly, the mean square velocity response 4;;{ is

2 o
Yg=—s— 1 | (9)
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where the dimensionless coefficient IIn is shown as Figure 4. For

high Q systems ({ < 0.010), both ‘I.n and IIn are nearly zero for wc/wn
somewhat less than one; they rapidly approach unity as wc/wn becomes
slightly greater than one and converge to unity as wc/wn—’oo . This be-
havior implies the mechanical system acts as a highly selective band-
pass filter for both displacement and velocity and admits frequency com-
ponents principally near w . By selecting In and Hn as unity, upper
11m1ts " for LIJ and q;;{ are calculated.

The autocorrelation function for the displacement response is

TQG -Lw T
~e 9 n N
RX(T)— >3 © cos wdt+ sin wdt (10)
: 2m w
n 1 - Q

where Wy is the damped natural frequency of the system and related

~ ] 2 :
to w as Wy =) 1 -¢ . The magnitude of this function at T = 0 yields

the mean square displacement response

R (0)= 4 =—53

which is identical to Eq. (8) with In equal to unity.

als
The mean square acceleration response may be developed in a similar

manner and, in general, tends to be divergent as /wn > 1 and becomes
unbounded as w /wn—’oo
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1
The time lapse AT for the amplitude of RX(T) to decay to N times its

initial amplitude is given by

(11)

and is called the correlation time or correlation interval (Reference 5).
This time interval corresponds to the time lapse for the free vibration
of a lightly damped single degree-of-freedom system to decay to -i-
times an initial amplitude X

For a white noise excitation, the probability density function of
the response at any instant of time is Gaussian (Normal). The probability
density of the envelope of the peaks is Rayleigh. The probability density
of the individual peak amplitudes is, likewise, nearly Rayleigh and be-
comes precisely Rayleigh when the damping becomes sufficiently small
to define an infinitely narrow bandpass at fIl .

The probability density of the response maxima during a finite ob-
servation time is neither Gaussian nor Rayleigh and forms the crux of the
SHP problem. A solution for this probability distribution function is

given in Reference 10 as

~ Quw T
n

P Ty~ A ° T (12
qulspo’ )= o ° >Tcor )

where Ao is a constant whose magnitude is dependent upon the initial con-
ditions of the system, and Teor denotes the time lapse for the autocorre-
lation function to decay to a negligible value. For most applications with

[30 > 2, A0 may be assumed equal to unity with trivial error. The
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term @ is dependent upon the system damping Q and a preselected
level of the [30 ratio. Plots of @ versus Q are shown in Figure 5
as families of curves _in ﬁo for both [3+ and lﬁ' . This figure in con-
junction with Eq. (12) provides a theoretical solufion to the SHP prob-
lem for a linear mechanical oscillator.

Empirical solutions to this problem have been determined using
techniques amenable to digital and analog computation. By means of an
active electrical analog simulation (differential amplifier circuits), the
results* shown as Figures 6, 7, 8 and 9 have been obtained. Figures 6

and 7 are families of plots in Q of the dimensionless time parameter

' fnT/Q versus |B| for PM(|p| < B_)=0.50 and 0.95. These data may

be compared directly with the results of Figure 5 by restating Eq. (12) in

the form

In [P, (IB] < B)]
o = - Pl < B (13)

o Z[fnT
2 —
TQ o ]

and evaluating this expression in the following manner

o

These data are partially from Reference 4 and partially from inde-
pendent analog studies carried out after the writing of Reference 4. Addi-
tional data were obtained from a digital simulation study sponsored by

"Mr. E. H. Schell of AFFDL, Wright-Patterson Air Force Base, Ohio.

These digital results tend to substantiate the shown analog data although
the P results for the higher probability values were consistently lower
(within 10% and generally not more than 5%).

11
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Figure 7. Response Maxima of a Single Degree-of-Freedom System
to Stationary White Noise

13




1n 0. 50]

o_— f T
21TQ2 [_nQ__:,

o = 1n [0. 95]

o ZfT
21 Q __r;)_

The data values for Bo = 3 and [30 = 4 in Figure 6 and for BO = 3,

ﬁo =4 and [30 = 5 in Figure 7 agree closely with their equivalent values
in Figure 5. It may thus be concluded that these analog results defini-
tively support the theoretical solution of Eq. (12).

Figure 8 is a set of plots in Q of IBl versus fnT/Q for
f;M(|B| < po) = 0.95 and §M(|p| < ﬁo) = 0.50. Only curves for Q = 20
and Q = 50 are shown since these values are considered to be more
typical of damping in physical structures, and thus, of most interest.
These curves are exploded views of Figures 6 and 7 for fnT/Q <5 and
find application wherein the time interval T may be relatively short.
The larger |B] values are associated with the lower damping ratios for
all fnT/Q with the sharpest rate of increase noted fO/I; fnT/Q ranging
from 0 to 3. It is observed that po values of 3 for PM(| B' < [30) = 0.50
and ﬁo values of 4 for E)\M(' ﬁl < [30) = 0.95 are to be expected where
fnT/Q > 5.

Figure 9 shows Hil versus fnT/Q plots of the average maxima of
'BI for Q =20 and Q = 50. These curves are very nearly the same as
those for I?’M(Iﬁl < BO) = 0. 50 in Figure 8 with one exception. The data

for Q = 20 appears to become numerically equivalent with that for Q = 50

14
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|

Wheré fnT/Q_>_ 4. From these data, the median and average values of
IB' for Q = 50 tend to become very nearly the same. It is suggested
that a practical estimate of the average maximum response may be de-
termined by using the |p] versus fnT/Q plot for Q = 50.

The maximum response of a simple oscillator to shaped noise
bursts also has been examined by an active analog simulation as dis-
cussed in References 4 and 8. The noise burst excitation may be written

as

£(t) = E(t) n(t) (14)

where E(t) is a specifically defined envelope function and n(t) is the
output response of a random noise generator with a white noise spectrum
of magnitude Go . Data from these studies are shown as Figures 10
and 11 where |[3| is the dimensionless ratio of the maximum response
to the RMS response and fn'r/Q is the dimensionless time ratio where T
is a time duration of the input burst of noise. The RMS response is the
output response of the oscillator to broadband white noise wherein

E(t) = 1. By normalizing the B response in this way, time varying
RMS considerations are avoided. These data suggest the noise burst
response maxima become relatively the same as that for the stationary
response when fnT/Q ~ 1.5. Thus, plots such as these may be used to
establish criteria for the conditions under which an oscillator achieves

stationarity in its response.

17
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3. RESPONSE MAXIMA OF DISTRIBUTED ELASTIC PLATES

In this section, the SHP problem is considered wherein the struc-
ture is a flat square plate and the applied force excitation is stationary
white»noise correlated perfectly in both space and time. The B re-
sponse statistics are then examined via measurements taken at a point
near the center of the plate for two types of boundary conditions, (1)
simply supported at all edges and (2) rigidly clamped at all edges.

The equation of motion for a flat square plate is
4 )
Dv (w) + mw = f(x, vy, t) (15)

where f(x,y,t) is the applied force excitation per unit area, m the mass
per unit area, w = w(x,y,t) = the lateral deflection from static equilibrium,

v the Poisson's ratio and

e, 47 )
()=
dt®
3
D:___Eh___z_ (16)
12(1 - v°)

Vi)

2 2
I P
2 2
9x oy

The coefficient D is the flexural rigidity of the plate wherein E is
Young's modulus and h the plate thickness. The notation v4( )

20



defines a spatial operator suitable to the rectangular geometry of the
square plate where v is the familiar dell operator for rectangular co-
ordinates.

The mean square displacement response of an arbitrary linear
elastic structure to a uniform, homogeneous forcing field may be

written as

oo

2 —~ ~ sk
WOEDIPIICENC [ ) B Ly ) do a7

where the quantity ij(co) is expressed in terms of the spatial cross-

spectral density function Sf(?,?', w) as

1 A _A e
L. (w) = . & (F) ¢, (F) S, (F, 7', w) dT dT" (18)
jk 2 2.[ f TR L

Mj Mkwj w 70 40

. . 2
or in terms of the joint acceptance ij(w) as

S(F_, ) % ,
L. (w) = j.. () (19)
KT = 3 2 I

Mj Mk wj wk

The notation T refers to a spatial position vector, ¢j(?) the jth normal
mode of the system, (.oj the jth modal frequency, Hj(w) the jth modal

magnification factor defined as

21




1
Hj(w) = > (20)
1-[2) +i2g &

w. ] wj

—

‘and H;::(w) the complex conjugate of Hk(w) . The symbol A denotes the
area of the plate and the quantity Sf(?o, w) refers to a spectral density
function of the applied force at the spatial location ?o . If the position
?o is selected to be a point on the structure where Sf(?o, w) is a

maximum (w) will vary from zero to one. From Eqgs. (18) and (19),

s ij
the joint acceptance is found to be

2 1 A A
i (@) :——-———f f o.(¥) ¢, (F) S(F, T, w) dF dF (21)
Jk ST, ) Abdg Jo 7K f

By assuming the j # k terms to be negligible in comparison to the
j = k terms, the mean square displacement response becomes (for the

conditions of this problem)

A 2
NG f 6, (F) aF _
LP.jv(‘r“) s 2] _02 y f lH.(w)I ® dw (22)
j Mj ©; -~ )

or, in terms of the physically realizable spectrum Go ,

22



2 A "~

N E)) f ¢.(%) ar
2 -6, 3 —— 0 wa()Zdw (23)
bl =G 2 W oA o 15l

Similarly, the mean square velocity response may be written as

2 A :
¢ () f ¢.(F) dF 2
2 o ) 0 R ™ 2 24
Yo (r) = Go Z — — - -(.0— |HJ(0)) dw ! (24)
j Mj wj 0 j

In terms of the functions I and I shown as Figure 3 and 4, Eqs. (23)

and (24) are of the form

A .
wi®=Tc 3 ¢J.2(?)' f 6,(F) oF =1 (25)
j 0

A
2 T 2 P
b3m =3 G Zj:¢j('r') fo o () ar| L3 . (26)

The SHP problem for the plate structure is studied empirically
by examining the B results from the electrical analog simulation de-
picted schematically by Figure 12. The transformer whiffle-tree cir-
cuit is used to create a spatial correlation of unity for the white noise
excitation which is applied to the plate analog. As shown in this figure,
the data of interest include both positive and negative response maxima

(measured by the '"peak' readers) and the RMS response.

23
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Broad Band Reader
Transformer Analog
Random . . . '
Noise — Whiffle-Tree —¥ Simulation L—A RMS Meter P} Printer
Circuit of Plate
Generator Z
"Peak "
Reader
Excitation Velocity

Response

Figure 12. Block Diagram of Analog Simulation Study

The plate analog circuits are derived from energy concepts (Ref-
erence 2) and may be categorized as mobility analogs. Such circuits
consist of passive electrical components, are appropriate for nonuniform
physical and geometric properties, and appear topologically similar*

to the physical system. Mathematically, this type of analog corresponds

to a finite-difference model whereas, mechanically, it may be interpreted

as a form of lumped-parameter model. Background information about
such structural analogs is found in Reference 9.
The physical dimensions and physical properties of the uniform,

homogeneous plate are defined as

“For the more complicated structural configurations, a rather vivid
imagination admittedly is required.

24



a=b=4=111in

h = 0.0625 in

E =10.5x% 106 lb/i.n2
.3

p=0.101b/in

v=20.3

For simply supported edge conditions, the plate modal frequencies are

given by

2 2
cps (27)

ol 1}

where rs denote the mode numbers (the number of half-sinesl in the
x and y dimensions). With D = 235 1b-in and m = 1. 62 x 10"5 1b—sec2/in3,
the fundamental modal frequency is f11 2 99 cps. For rigidly clamped
edge conditions, the fundamental modal frequency is fll =~ 181 cps.

The plate circuits and expressions for the component values used
in this study are given in Reference 3. By scaling the analog circuits
such that electrical time corresponds to real time (N = 1) and applying a uni-
formly distributed sinusoidal load, the velocity to force frequency response
functions at x = -‘%— and y = i;— are obtained as shown in Figure 13.
These response functions indicate the magnitude of the circuit impedance
at a particular point and are equivalent to mobility plots (magnitude only).
The fundamental modal frequencies are noted to be approximately equal
to the values previously calculated for both simply supported and rigidly
clamped ‘boundary conditions. Due to the symmetry of the loading, only

even valued modes (i. e, where the mode shapes are symmetric about the

25
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Frequency Response Functions of a Square Plate

Figure 13.
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mid-spans of the plate) can be excited as is seen in these plots. The
depth of the valleys between the modal frequencies is indicative of the
modal coupling in the system.

A measure of the damping in the first mode is given by

Q) A1 (28)

where Afll is the half-power bandwidth centered at fll .

yields Qll & 33.9 for the simply supported boundaries and Qll x 39.7

This expression

for the rigidly clamped boundaries. Such damping is inherent in the com-
puter (due to the fact that the circuit capacitors, inductors and trans-
formers are not ideal, interconnecting wires have resistance,v physical
layout of the components produce parasitics, etc.) and, although it can-
not be precisely controlled, damping values in the first mode ranging from
Q=30 to Q =50 are to be expeéted with proper scaling.

In the simulation study, the plate is continuously excited by station-
ary white noise correlated perfectly in both space and time and the velocity
response at x = % and y = % is observed for various time durations T
such that the dimensionless ratio fllT/Qll ranges from 0 to 5.00.

The magnitude of the white noise input is adjusted such that a response
maxima of approximately six times the RMS response (6 [30 values) could
occur without distortion. For a specified T value, the response is
sampled 100 times wherein both the positive and negative response max-
ima are recorded for each sampling thus producing a total of 200 data
points. Typical response time histories (as observed over a finite sam-
pling time interval T) are shown as Figures 14 and 15. It is to be noted
the response does not appear to be the same as the stationary response of
a linear oscillator to white noise, i.e., as a type of harmonic inotion with
randomly varying amplitude and phase. Rather, higher frequency effects

due to modal frequencies other than fll are evident.

27
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These individual maxima response data are next arranged in
rank order, then divided by the RMS response to form histograms of
/]':\)M(ﬁ+ < [30) and EM(B— < ﬁo). A typical example of such data is
shown as Figure 16. By adding the ﬁ+ and B data, a histogram of
gM(lﬁl < Bo) is formed as shown in Figure 17 and this is used (one
such histogram for each sampling time T) to obtain individual prob-
ability data points for ISL versus fllT/Qll plots. It is understood
that these histograms are estimates of the true maxima response prob-
ability density functions for a specified value of fllT/Qll . Additional
data should therefore be accumulated so that the variance of such data
may be analyzed.

Following such an empirical procedure just described, the |B|
versus f“T/Q11 plots of Figures 18 and 19 are developed. Note that

only the fundamental modal frequency f . and its associated damping

11
Q need be known for the structure. These curves display a be-

hal'\}ior similar to that for the single degree-of-freedom system (com-
pare with Figures 8 and 9) but have consistently higher values of |Bl
for a given probability. The curve for I/D\M(lﬁl < {30) = 0. 50 is approxi-
mately the same as that for the average IBI and consequently is not in-
cluded as a separate figure.

For a given probability, the |B|O ratio increases indefinitely with
time and theoretically |Bl == oo as T = o, the latter being a truism
of limited practical concern. The greatest rate of increase in |[3|
is seen to occur within 0 < fllT/Qll <3. For fllT/Q11 =3, |gl

values of approximately three are expected on the average and 95% of

all amplitude maxima are expected to be equal to or less than Bo =~ 4.
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Consider the maximum response characteristics of a plate sub-
jected to a burst of white noise shaped in time by a well defined envelope
function. It is required to develop a solution such that one may predict
the expected single highest response maximum due to a noise burst of
finite duration. This problem may be examined in much the same way
as with the stationary excitation, that is by an analog simulation study
wherein data for the response maxima are collected and arranged to
form | B| plots. However, special attention must be given to (1) the
RMS response used to form the B ratio and (2) the time duration com-
mon to the dimensionless time parameter f“']."/Q11 . As with the
previous problem, the P response is normalized using the RMS response
of the system to broadhand white noise correlated perfectly in both space

and time wherein the magnitude of the stationary noise corresponds to

the value where the envelope function is a maximum (E(t) =1). Al-

though admittédly arbitrary, this procedure avoids consideration of a
time varying RMS. The sampling time interval T is replaced by T
which denotes the time duration of the noise burst. With these modifica-
tions in definition, this nonstationary problem may now be plausibly
attacked.

With the system initially at rest, a rectangular noise burst is
applied for T seconds typically producing the response as shown in Fig-
ure 20. The system response is monitored from the onset of the ex-
citation until the free vibration response has decayed to a negligible level
and both the positive and negative maximum response values are re-
corded. By sampling the system response one hundred times for each T
setting and arranging the data in the same manner as with the stationary
excitation, the |B| plots of Figures 21 and 22 are constructed. Data
points for simply supported boundaries are noted by e's and data points

for rigidly clamped boundaries are shown by Als .
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Similar to the behavior for a single degree-of-freedom system,

the response data are bounded by the curve depicting the stationary re-

.sponse of the plates. As the time duration of the noise burst becomes

lo.rig relative to the fundamental modal period of the structure, the non-
stationary excitation appears as a stationary white noise input and the
noise burst response becomes essentially fhat of the stationary curve.
Curves such as these may be used to define the conditions under which
a multimode system excited by a noise burst achieves stationarity in its
response.

Of vast importance, however, is that the data for both stationary
and nonstationary random excitation imply the I Bl response tends to be
independent of the boundary conditions. Such a statement must be con-
sidered as a qualified conjecture until more data are collected and éna-
lyzed and/or theoretical work is advanced to support or reject this
claim. In the interim, |[3|‘cur'v;es such as included in this report may
be used discretely in engineering applications wherein a maxima re-

sponse criteria for distributed structures is applicable.
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4. CONCLUDING REMARKS

The SHP problem has been reviewed briefly for a single degree-
of-freedom system wherein both analytical and empirical solutions have
been discussed. More important, data have been presented forming an
empirical solution to the SHP problem for a square plate with (1) simply
supported boundaries and (2) rigidly clamped boundaries. The random
excitation applied over the plate is (1) stationary white noise with a
unity correlation in both space and time.and (2) nonstationary excitation
shaped (in time) as rectangular noise bursts with a unity correlation in
both space and time. A comparison of gM(lﬁl < [30) data for the single
degree-of-freedom system and plate shows the |B| response maxima to
be consistently higher for the plate. Of particular significance in the
plate data is the implication that the /P\’M(“?»l < BO) curves are inde-
pendent of the boundary conditions. Such an implication has far-reaching
practical significance and should be investigated thoroughly in the im-
mediate future. In addition, the effect on the response maxima of mass
loading and of bandlimited excitation with spatial and spectral character-
istics more typical of service conditions would be indeed worthwhile

investigations.
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